翻訳と辞書
Words near each other
・ Perillartine
・ Perillene
・ Perillula
・ Perillus bioculatus
・ Perilly's
・ Perillyl alcohol
・ Perillyl-alcohol dehydrogenase
・ Perilous
・ Perilous Dreams
・ Perilous Holiday
・ Perilous Journey
・ Perilous Journeys
・ Perieți, Ialomița
・ Perieți, Olt
・ Periferic
Perifocal coordinate system
・ Perifollicular fibroma
・ Perifollicular mucinosis
・ Perifolliculitis
・ Perifosine
・ Perifovea
・ Periga
・ Perigea
・ Perigea bahamica
・ Perigea pectinata
・ Perigea xanthioides
・ Perigean spring tide
・ Perigeo
・ Perigeodes
・ Perigi Lama


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Perifocal coordinate system : ウィキペディア英語版
Perifocal coordinate system
The perifocal coordinate (PQW) system is a frame of reference for an orbit. The frame is centered at the focus of the orbit, i.e. the celestial body about which the orbit is centered. The unit vectors \bold} lie in the plane of the orbit. \bold} has a true anomaly (\theta) of 90 degrees past the periapsis. The third unit vector \bold} = \bold}
And, since \bold} = \frac\|}
Where h is the specific relative angular momentum.
The position and velocity vectors can be determined for any location of the orbit. The position vector, r, can be expressed as:
:\bold = \|r\| \cos \theta \mathbf}
Where \theta is the true anomaly and the radius ''r'' may be calculated from the orbit equation.
The velocity vector, v, is found by taking the time derivative of the position vector:
:\bold = \bold \cos \theta - r \dot \sin \theta)\bold \sin \theta + r \dot \cos \theta)\bold = \frace \sin \theta
where \mu is the gravitational parameter of the focus, ''h'' is the specific relative angular momentum of the orbital body, ''e'' is the eccentricity of the orbit, and \theta is the true anomaly. \dot is the radial component of the velocity vector (pointing inward toward the focus) and r \dot is the tangential component of the velocity vector. By substituting the equations for \dot and r \dot into the velocity vector equation and simplifying, the final form of the velocity vector equation is obtained as:〔Curtis, H. D. (2005). ''Orbital Mechanics for Engineering Students.'' Burlington, MA: Elsevier Buttersorth-Heinemann. pp 76–77〕
:\bold = \frac(\theta \bold} )
==Transformation from equatorial coordinate system==
The perifocal coordinate system can also be defined using the orbital parameters inclination (''i''), right ascension (\Omega) and the argument of perigee (\omega). The following equations transform an orbit from the equatorial coordinate system to the perifocal coordinate system.〔Snow, K. (1999). ''Orbits in Space.''〕
:
\begin
p_i & = \cos \Omega \cos \omega - \sin \Omega \cos i \sin \omega \\
p_j & = \sin \Omega \cos \omega + \cos \Omega \cos i \sin \omega \\
p_k & = \sin i \sin \omega \\()
q_i & = -\cos \Omega \sin \omega - \sin \Omega \cos i \cos \omega \\
q_j & = -\sin \Omega \sin \omega + \cos \Omega \cos i \cos \omega \\
q_k & = \sin i \cos \omega \\()
w_i & = \sin i \sin \Omega \\
w_j & = -\sin i \cos \Omega \\
w_k & = \cos i
\end

where
:
\begin
\bold} + p_j\bold} \\
\bold} + q_j\bold} \\
\bold} + w_j\bold}
\end

and \bold}, and \bold{\hat{K}} are the unit vectors of the equatorial coordinate system.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Perifocal coordinate system」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.